Flavonoids as mushroom tyrosinase inhibitors: a fluorescence quenching study

Cited 167 time in scopus
Metadata Downloads
Flavonoids as mushroom tyrosinase inhibitors: a fluorescence quenching study
Donghyun Kim; Jiyeoun Park; Jinhee Kim; C Han; J Yoon; N Kim; J Seo; Choong Hwan Lee
Bibliographic Citation
Journal of Agricultural and Food Chemistry, vol. 54, no. 3, pp. 935-941
Publication Year
Flavonoids, a group of naturally occurring antioxidants and metal chelators, can be used as tyrosinase inhibitors due to their formation of copper-flavonoid complexes. Thus, to investigate the underlying inhibition mechanism, a large group of flavonoids from several major flavones and flavonols were tested using fluorescence quenching spectroscopy. In addition, large differences in the tyrosinase inhibitory activities and chelating capacities according to the location of the hydroxyl group(s) in combination with the A and B rings in the flavonoids were confirmed. Accordingly, the major conclusions from this work are as follows: (i) The tyrosinase inhibitory activity is not only dependent on the number of hydroxyl groups in the flavonoids, (ii) the enzyme is primarily quenched by the hydroxyl group(s) of A and B rings on the ether side of the flavonoids, and (iii) the tyrosinase inhibitory activity of 7,8,3′,4′-tetrahydroxyflavone is supported by a virtual model of docking with the mushroom tyrosinase, which depicts the quenching of the enzyme. The results also demonstrated that the dihydroxy substitutions in the A and B rings are crucial for Cu2+-chelate formation, thereby influencing the tyrosinase inhibitory activity.
Copper chelatorFlavonoidsFluorescence quenchingTyrosinase inhibitor
Amer Chem Soc
Appears in Collections:
1. Journal Articles > Journal Articles
Files in This Item:
  • There are no files associated with this item.

Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.