Structure-activity relationships of anti-HIV-1 peptides with disulfide linkage between D- and L-cysteine at positions i and i+3, respectively, derived from HIV-1 gp41 C-peptide

Cited 9 time in scopus
Metadata Downloads
Title
Structure-activity relationships of anti-HIV-1 peptides with disulfide linkage between D- and L-cysteine at positions i and i+3, respectively, derived from HIV-1 gp41 C-peptide
Author(s)
Myung Kyu Lee; Hee Kyung Kim; Tae Young Lee; K S Hahm; K L Kim
Bibliographic Citation
Experimental and Molecular Medicine, vol. 38, no. 1, pp. 18-26
Publication Year
2006
Abstract
The constrained α-helical structure of a C-peptide is useful for enhancing anti-HIV-1 activity. The i and i+3 positions in an α-helical structure are located close together, therefore D-Cys (dC) and L-Cys (C) were introduced at the positions, respectively, to make a dC-C disulfide bond in 28mer C-peptides. Accordingly, this study tested whether a dC-C disulfide bond would increase the α-helicity and anti-HIV-1 activity of peptides. A C-peptide can be divided into three domains, the N-terminal hydrophobic domain (HPD), middle interface domain (IFD), and C-terminal hydrogen domain (HGD), based on the binding property with an N-peptide. In general, the dC-C modifications in HPD enhanced the anti-HIV-1 activity, while those in IFD and HGD resulted in no or much less activity. The modified peptides with no activity clearly showed much less α-helicity than the native peptides, while those with higher activity showed an almost similar or slightly increased α-helicity. Therefore, the present results suggest that the introduction of a dC-C bridge in the N-terminal hydrophobic domain of a C-peptide may be useful for enhancing the anti-HIV-1 activity.
Keyword
anti-HIV agentsHIV envelope protein gp41HIV-1receptors, HIVstructure-activity relationshipviral fusion proteinsacetyl dextro
ISSN
I000-0028
Publisher
Springer-Nature Pub Group
DOI
http://dx.doi.org/10.1038/emm.2006.3
Type
Article
Appears in Collections:
Division of Biomaterials Research > Bionanotechnology Research Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.