Amyloidogenesis of type III-dependent harpins from plant pathogenic bacteria

Cited 90 time in scopus
Metadata Downloads
Title
Amyloidogenesis of type III-dependent harpins from plant pathogenic bacteria
Author(s)
J Oh; J G Kim; E Jeon; C H Yoo; Jae Sun Moon; S Rhee; I Hwang
Bibliographic Citation
Journal of Biological Chemistry, vol. 282, no. 18, pp. 13601-13609
Publication Year
2007
Abstract
Harpins are heat-stable, glycine-rich type III-secreted proteins produced by plant pathogenic bacteria, which cause a hypersensitive response (HR) when infiltrated into the intercellular space of tobacco leaves; however, the biochemical mechanisms by which harpins cause plant cell death remain unclear. In this study, we determined the biochemical characteristics of HpaG, the first harpin identified from a Xanthomonas species, under plant apoplast-like conditions using electron microscopy and circular dichroism spectroscopy. We found that His6-HpaG formed biologically active spherical oligomers, protofibrils, and β-sheet-rich fibrils, whereas the null HR mutant His 6-HpaG(L50P) did not. Biochemical analysis and HR assay of various forms of HpaG demonstrated that the transition from an α-helix to β-sheet-rich fibrils is important for the biological activity of protein. The fibrillar form of His6-HpaG is an amyloid protein based on positive staining with Congo red to produce green birefringence under polarized light, increased protease resistance, and β-sheet fibril structure. Other harpins, such as HrpN from Erwinia amylovora and HrpZ from Pseudomonas syringae pv. syringae, also formed curvilinear protofibrils or fibrils under plant apoplast-like conditions, suggesting that amyloidogenesis is a common feature of harpins. Missense and deletion mutagenesis of HpaG indicated that the rate of HpaG fibril formation is modulated by a motif present in the C terminus. The plant cytotoxicity of HpaG is unique among the amyloid-forming proteins that occur in several microorganisms. Structural and morphological analogies between HpaG and disease-related amyloidogenic proteins, such as Aβ protein, suggest possible common biochemical characteristics in the induction of plant and animal cell death.
ISSN
0021-9258
Publisher
Amer Soc Biochemistry Molecular Biology Inc
DOI
http://dx.doi.org/10.1074/jbc.M602576200
Type
Article
Appears in Collections:
Division of Research on National Challenges > Plant Systems Engineering Research > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.