A single N-linked glycosylation site in the Japanese encephalitis virus prM protein is critical for cell type-specific prM protein biogenesis, virus particle release, and pathogenicity in mice

Cited 73 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorJ M Kim-
dc.contributor.authorS I Yun-
dc.contributor.authorB H Song-
dc.contributor.authorY S Hahn-
dc.contributor.authorC H Lee-
dc.contributor.authorHyun Woo Oh-
dc.contributor.authorY M Lee-
dc.date.accessioned2017-04-19T09:11:27Z-
dc.date.available2017-04-19T09:11:27Z-
dc.date.issued2008-
dc.identifier.issn0022-538X-
dc.identifier.uri10.1128/JVI.00789-08ko
dc.identifier.urihttps://oak.kribb.re.kr/handle/201005/8554-
dc.description.abstractThe prM protein of Japanese encephalitis virus (JEV) contains a single potential N-linked glycosylation site, N15-X16-T 17, which is highly conserved among JEV strains and closely related flaviviruses. To investigate the role of this site in JEV replication and pathogenesis, we manipulated the RNA genome by using infectious JEV cDNA to generate three prM mutants (N15A, T17A, and N15A/T17A) with alanine substiting for N15 and/or T17 and one mutant with silent point mutations introduced into the nucleotide sequences corresponding to all three residues in the glycosylation site. An analysis of these mutants in the presence or absence of endoglycosidases confirmed the addition of oligosaccharides to this potential glycosylation site. The loss of prM N glycosylation, without significantly altering the intracellular levels of viral RNA and proteins, led to an ?20-fold reduction in the production of extracellular virions, which had protein compositions and infectivities nearly identical to those of wild-type virions; this reduction occurred at the stage of virus release, rather than assembly. This release defect was correlated with small-plaque morphology and an N-glycosylation-dependent delay in viral growth. A more conservative mutation, N15Q, had the same effect as N15A. One of the four prM mutants, N15A/T17A, showed an additional defect in virus growth in mosquito C6/36 cells but not human neuroblastoma SH-SY5Y or hamster BHK-21 cells. This cell type dependence was attributed to abnormal N-glycosylation-independent biogenesis of prM. In mice, the elimination of prM N glycosylation resulted in a drastic decrease in virulence after peripheral inoculation. Overall, our findings indicate that this highly conserved N-glycosylation motif in prM is crucial for multiple stages of JEV biology: prM biogenesis, virus release, and pathogenesis.-
dc.publisherAmer Soc Microb-
dc.titleA single N-linked glycosylation site in the Japanese encephalitis virus prM protein is critical for cell type-specific prM protein biogenesis, virus particle release, and pathogenicity in mice-
dc.title.alternativeA single N-linked glycosylation site in the Japanese encephalitis virus prM protein is critical for cell type-specific prM protein biogenesis, virus particle release, and pathogenicity in mice-
dc.typeArticle-
dc.citation.titleJournal of Virology-
dc.citation.number16-
dc.citation.endPage7862-
dc.citation.startPage7846-
dc.citation.volume82-
dc.contributor.affiliatedAuthorHyun Woo Oh-
dc.contributor.alternativeName김정민-
dc.contributor.alternativeName윤상임-
dc.contributor.alternativeName송병학-
dc.contributor.alternativeName한윤수-
dc.contributor.alternativeName이찬희-
dc.contributor.alternativeName오현우-
dc.contributor.alternativeName이영민-
dc.identifier.bibliographicCitationJournal of Virology, vol. 82, no. 16, pp. 7846-7862-
dc.identifier.doi10.1128/JVI.00789-08-
dc.description.journalClassY-
Appears in Collections:
Division of Bio Technology Innovation > Core Research Facility & Analysis Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.