Cited 29 time in
- Title
- Monitoring bacterial population dynamics using real-time PCR during the bioremediation of crude-oil-contaminated soil
- Author(s)
- Geang Hea Beak; Byung Dae Yoon; Dae Hyun Cho; Byung-Hyuk Kim; Hee-Mock Oh; Hee-Sik Kim
- Bibliographic Citation
- Journal of Microbiology and Biotechnology, vol. 19, no. 4, pp. 339-345
- Publication Year
- 2009
- Abstract
- We evaluated the activity and abundance of the crudeoil- degrading bacterium Nocardia sp. H17-1 during bioremediation of oil-contaminated soil, using real-time PCR. The total petroleum hydrocarbon (TPH) degradation rate constants (k) of the soils treated with and without H17-1 were 0.103 d-1 and 0.028 d-1, respectively. The degradation rate constant was 3.6 times higher in the soil with H17-1 than in the soil without H17-1. In order to detect and quantify the Nocardia sp. H17-1 in soil samples, we quantified the genes encoding 16S ribosomal RNA (16S rRNA), alkane monooxygenase (alkB4), and catechol 2,3-dioxygenase (23CAT) with real-time PCR using SYBR green. The amounts of H17-1 16S rRNA and alkB4 detected increased rapidly up to 1,000-folds for the first 10 days, and then continued to increase only slightly or leveled off. However, the abundance of the 23CAT gene detected in H17-1-treated soil, where H17-1 had neither the 23CAT gene for the degradation of aromatic hydrocarbons nor the catechol 2,3-dioxygenase activity, did not differ significantly from that of the untreated soil (alpha=0.05, p>0.22).
- Keyword
- BioaugmentationCrude oilNocardia spReal-time PCRTotal petroleum hydrocarbon
- ISSN
- 1017-7825
- Publisher
- Korea Soc-Assoc-Inst
- Full Text Link
- http://dx.doi.org/10.4014/jmb.0807.423
- Type
- Article
- Appears in Collections:
- Synthetic Biology and Bioengineering Research Institute > Cell Factory Research Center > 1. Journal Articles
- Files in This Item:
Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.