Detection of mutant p53 using field-effect transistor biosensor

Cited 29 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorS H Han-
dc.contributor.authorS K Kim-
dc.contributor.authorKyoung Sook Park-
dc.contributor.authorSo Yeon Yi-
dc.contributor.authorH J Park-
dc.contributor.authorH K Lyu-
dc.contributor.authorMoonil Kim-
dc.contributor.authorBong Hyun Chung-
dc.date.accessioned2017-04-19T09:18:18Z-
dc.date.available2017-04-19T09:18:18Z-
dc.date.issued2010-
dc.identifier.issn00032670-
dc.identifier.uri10.1016/j.aca.2010.03.006ko
dc.identifier.urihttps://oak.kribb.re.kr/handle/201005/9474-
dc.description.abstractWe assessed the abilities of wild p53 and mutant p53 proteins to interact with the consensus DNA-binding sequence using a MOSFET biosensor. This is the first report in which mutant p53 has been detected on the basis of DNA-protein interaction using a FET-type biosensor. In an effort to evaluate the performance of this protocol, we constructed the core domain of wild p53 and mutant p53 (R248W), which is DNA-binding-defective. After the immobilization of the cognate DNA to the sensing layer, wild p53 and mutant p53 were applied to the DNA-coated gate surface, and subsequently analyzed using a semiconductor analyzer. As a consequence, a significant up-shift in drain current was noted in response to wild p53, but not mutant p53, thereby indicating that sequence-specific DNA-protein interactions could be successfully monitored using a field-effect-based biosensor. These data also corresponded to the results obtained using surface plasmon resonance (SPR) measurements. Taken together, our results show that a FET-type biosensor might be promising for the monitoring of mutant p53 on the basis of its DNA-binding activity, providing us with very valuable insights into the monitoring for diseases, particularly those associated with DNA-protein binding events.-
dc.publisherElsevier-
dc.titleDetection of mutant p53 using field-effect transistor biosensor-
dc.title.alternativeDetection of mutant p53 using field-effect transistor biosensor-
dc.typeArticle-
dc.citation.titleAnalytica Chimica Acta-
dc.citation.number1-
dc.citation.endPage83-
dc.citation.startPage79-
dc.citation.volume665-
dc.contributor.affiliatedAuthorMoonil Kim-
dc.contributor.alternativeName한상희-
dc.contributor.alternativeName김상규-
dc.contributor.alternativeName박경숙-
dc.contributor.alternativeName이소연-
dc.contributor.alternativeName박혜정-
dc.contributor.alternativeName류홍근-
dc.contributor.alternativeName김문일-
dc.contributor.alternativeName정봉현-
dc.identifier.bibliographicCitationAnalytica Chimica Acta, vol. 665, no. 1, pp. 79-83-
dc.identifier.doi10.1016/j.aca.2010.03.006-
dc.subject.keywordBiosensor-
dc.subject.keywordDNA-binding domain-
dc.subject.keywordMetal oxide semiconductor field-effect transistor-
dc.subject.keywordMutant p53-
dc.subject.keywordP53-
dc.subject.localBiosensor-
dc.subject.localDNA-binding domain-
dc.subject.localMetal oxide semiconductor field-effect transistor-
dc.subject.localMutant p53-
dc.subject.localP53-
dc.subject.localp53-
dc.description.journalClassY-
Appears in Collections:
Division of Biomaterials Research > Bionanotechnology Research Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.