Nox4-dependent H2O2 production contributes to chronic glutamate toxicity in primary cortical neurons

Cited 37 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorJong Seong Ha-
dc.contributor.authorJ E Lee-
dc.contributor.authorJae-Ran Lee-
dc.contributor.authorC S Lee-
dc.contributor.authorJ S Maeng-
dc.contributor.authorY S Bae-
dc.contributor.authorKi Sun Kwon-
dc.contributor.authorSung Sup Park-
dc.date.accessioned2017-04-19T09:18:51Z-
dc.date.available2017-04-19T09:18:51Z-
dc.date.issued2010-
dc.identifier.issn0014-4827-
dc.identifier.uri10.1016/j.yexcr.2010.03.021ko
dc.identifier.urihttps://oak.kribb.re.kr/handle/201005/9577-
dc.description.abstractReactive oxygen species (ROS) can trigger neuronal cell death and has been implicated in a variety of neurodegenerative diseases as well as brain ischemia. Here, we demonstrate that chronic (but not acute) glutamate toxicity in primary cortical neuronal cultures is associated with hydrogen peroxide (H2O2) accumulation in the culture medium and that neurotoxicity can be eliminated by external catalase treatment. Neuronal cultures in Ca2+-free medium or treated with BAPTA showed reduced glutamate-induced H2O2 generation, indicating that H2O2 generation is Ca2+-dependent. Pharmacological and genetic approaches revealed that NADPH oxidase plays a role in glutamate-induced H2O2 generation and that activation of NMDA and AMPA receptors is involved in this H2O2 generation. The Nox4 siRNA reduced NMDA-induced H2O2 production by 54% and cytotoxicity in parallel, suggesting that Nox4-containing NADPH oxidase functions NMDA receptor-mediated H2O2 production resulting in neurotoxicity. These findings suggest that the modulation of NADPH oxidase can be used as a new therapeutic strategy for glutamate-induced neuronal diseases.-
dc.publisherElsevier-
dc.titleNox4-dependent H2O2 production contributes to chronic glutamate toxicity in primary cortical neurons-
dc.title.alternativeNox4-dependent H2O2 production contributes to chronic glutamate toxicity in primary cortical neurons-
dc.typeArticle-
dc.citation.titleExperimental Cell Research-
dc.citation.number10-
dc.citation.endPage1661-
dc.citation.startPage1651-
dc.citation.volume316-
dc.contributor.affiliatedAuthorJong Seong Ha-
dc.contributor.affiliatedAuthorJae-Ran Lee-
dc.contributor.affiliatedAuthorKi Sun Kwon-
dc.contributor.affiliatedAuthorSung Sup Park-
dc.contributor.alternativeName하종성-
dc.contributor.alternativeName이정은-
dc.contributor.alternativeName이재란-
dc.contributor.alternativeName이철상-
dc.contributor.alternativeName맹진수-
dc.contributor.alternativeName배윤수-
dc.contributor.alternativeName권기선-
dc.contributor.alternativeName박성섭-
dc.identifier.bibliographicCitationExperimental Cell Research, vol. 316, no. 10, pp. 1651-1661-
dc.identifier.doi10.1016/j.yexcr.2010.03.021-
dc.subject.keywordChronic exposure-
dc.subject.keywordGlutamate toxicity-
dc.subject.keywordNox4-
dc.subject.keywordReactive oxygen species-
dc.subject.localchronic exposure-
dc.subject.localChronic exposure-
dc.subject.localglutamate toxicity-
dc.subject.localGlutamate toxicity-
dc.subject.localNox4-
dc.subject.localNOX4-
dc.subject.localReactive oxidative species-
dc.subject.localReactive oxygen species(ROS)-
dc.subject.localReactive oxygen species-
dc.subject.localReactive Oxygen Species (ROS)-
dc.subject.localReactive Oxygen Species-
dc.subject.localROS-
dc.subject.localReactive oxygen species (ROS)-
dc.subject.localreactive oxygen species-
dc.subject.localreactive oxygen species (ROS)-
dc.description.journalClassY-
Appears in Collections:
Synthetic Biology and Bioengineering Research Institute > Genome Editing Research Center > 1. Journal Articles
Aging Convergence Research Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.