Structure-based virtual screening of novel tubulin inhibitors and their characterization as anti-mitotic agents

Cited 42 time in scopus
Metadata Downloads
Title
Structure-based virtual screening of novel tubulin inhibitors and their characterization as anti-mitotic agents
Author(s)
N D Kim; E S Park; Y H Kim; S K Moon; S S Lee; S K Ahn; Dae Yeul Yu; K T No; K H Kim
Bibliographic Citation
Bioorganic & Medicinal Chemistry, vol. 18, no. 19, pp. 7092-7100
Publication Year
2010
Abstract
Microtubule cytoskeletons are involved in many essential functions throughout the life cycle of cells, including transport of materials into cells, cell movement, and proper progression of cell division. Small compounds that can bind at the colchicine site of tubulin have drawn great attention because these agents can suppress or inhibit microtubule dynamics and tubulin polymerization. To find novel tubulin polymerization inhibitors as anti-mitotic agents, we performed a virtual screening study of the colchicine binding site on tubulin. Novel tubulin inhibitors were identified and characterized by their inhibitory activities on tubulin polymerization in vitro. The structural basis for the interaction of novel inhibitors with tubulin was investigated by molecular modeling, and we have proposed binding models for these hit compounds with tubulin. The proposed docking models were very similar to the binding pattern of colchicine or podophyllotoxin with tubulin. These new hit compound derivatives exerted growth inhibitory effects on the HL60 cell lines tested and exhibited strong cell cycle arrest at G2/M phase. Furthermore, these compounds induced apoptosis after cell cycle arrest. In this study, we show that the validated derivatives of compound 11 could serve as potent lead compounds for designing novel anti-cancer agents that target microtubules.
Keyword
ColchicineMicrotubuleMolecular dockingPharmacophoreVirtual screening
ISSN
0968-0896
Publisher
Elsevier
DOI
http://dx.doi.org/10.1016/j.bmc.2010.07.072
Type
Article
Appears in Collections:
1. Journal Articles > Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.