Surfactant-free vapor-phase synthesis of single-crystalline gold nanoplates for optimally bioactive surfaces

Cited 25 time in scopus
Metadata Downloads
Title
Surfactant-free vapor-phase synthesis of single-crystalline gold nanoplates for optimally bioactive surfaces
Author(s)
Y Yoo; H Lee; H Lee; M Lee; S Yang; Ahreum Hwang; S I Kim; J Y Park; J Choo; Taejoon Kang; B Kim
Bibliographic Citation
Chemistry of Materials, vol. 29, no. 20, pp. 8747-8756
Publication Year
2017
Abstract
We report the surfactant-free vapor-phase synthesis of atomically flat and ultraclean gold nanoplates. These gold nanoplates can offer optimally functional surfaces through the immobilization of molecules without unspecific adsorption and defect, which could be quite valuable for diverse applications including biomedical sensing, plasmonics, molecular electronics, electrochemistry, etc. The ultraflat, ultraclean, and single-crystalline nanostructures, including gold nanoparticles (NPs), gold nanowires (NWs), gold nanobelts, and gold nanoplates, are stereoepitaxially grown on a substrate with a specific orientation. Moreover, the nanostructures can be selectively synthesized by experimental conditions and locations of the substrate. The geometry and orientation of the nanostructures show strong correlations, suggesting a growth process of seed NPs → NWs → nanobelts → nanoplates. This synthetic process can be explained by the mechanism in which the height-to-width ratio of gold nanostructures is determined by the ratio of the atom-supply rate by direct impingement to the atom-supply rate by surface diffusion. We finely tuned the shapes (NPs, NWs, nanobelts, or nanoplates) and sizes (from several micrometers to hundreds of micrometers) of the gold nanostructures by adjusting the deposition flux. Crucially, the surfactant-free and atomically flat gold nanoplates could be optimally bioactive surfaces. We substantially decreased the nonspecific binding of avidin by immobilizing the biotinylated molecules onto the gold nanoplates. Compared with thermally deposited gold films, the single-crystalline gold nanoplates showed a 100 times lower detection limit in the recognition of the biotin-avidin interaction. We anticipate that the gold nanoplates will bring us one-step closer to the realization of ideal biomolecular sensors because the several bioactive gold surfaces can be prepared by immobilizing various biological molecules onto the gold nanoplates.
ISSN
0897-4756
Publisher
Amer Chem Soc
Full Text Link
http://dx.doi.org/10.1021/acs.chemmater.7b02932
Type
Article
Appears in Collections:
Division of Research on National Challenges > Bionanotechnology Research Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.