Functional characterization of the mazEF toxin-antitoxin system in the pathogenic bacterium Agrobacterium tumefaciens

Cited 3 time in scopus
Metadata Downloads
Title
Functional characterization of the mazEF toxin-antitoxin system in the pathogenic bacterium Agrobacterium tumefaciens
Author(s)
Wonho Choi; Y Yamaguchi; Ji-Young Park; Sang-Hyun Park; Hyeok Won Lee; B K Lim; M Otto; M Inouye; M H Yoon; Jung-Ho Park
Bibliographic Citation
Microorganisms, vol. 9, no. 5, pp. 1107-1107
Publication Year
2021
Abstract
Agrobacterium tumefaciens is a pathogen of various plants which transfers its own DNA (T-DNA) to the host plants. It is used for producing genetically modified plants with this ability. To control T-DNA transfer to the right place, toxin-antitoxin (TA) systems of A. tumefaciens were used to control the target site of transfer without any unintentional targeting. Here, we describe a toxin-antitoxin system, Atu0939 (mazE-at) and Atu0940 (mazF-at), in the chromosome of Agrobacterium tumefaciens. The toxin in the TA system has 33.3% identity and 45.5% similarity with MazF in Escherichia coli. The expression of MazF-at caused cell growth inhibition, while cells with MazF-at co-expressed with MazE-at grew normally. In vivo and in vitro assays revealed that MazF-at inhibited protein synthesis by decreasing the cellular mRNA stability. Moreover, the catalytic residue of MazF-at was determined to be the 24th glutamic acid using site-directed mutagenesis. From the results, we concluded that MazF-at is a type II toxin-antitoxin system and a ribosome-independent endoribonuclease. Here, we characterized a TA system in A. tumefaciens whose understanding might help to find its physiological function and to develop further applications.
Keyword
Agrobacterium tumefaciensTA systemmazFMazEmRNA endonuclease
ISSN
2076-2607
Publisher
MDPI
DOI
http://dx.doi.org/10.3390/microorganisms9051107
Type
Article
Appears in Collections:
Division of Bio Technology Innovation > Bio-Evaluation Center > 1. Journal Articles
Division of Bio Technology Innovation > BioProcess Engineering Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.