DC Field | Value | Language |
---|---|---|
dc.contributor.author | S S Baek | - |
dc.contributor.author | J Pyo | - |
dc.contributor.author | Y S Kwon | - |
dc.contributor.author | S J Chun | - |
dc.contributor.author | S H Baek | - |
dc.contributor.author | Chi-Yong Ahn | - |
dc.contributor.author | Hee-Mock Oh | - |
dc.contributor.author | Y O Kim | - |
dc.contributor.author | K H Cho | - |
dc.date.accessioned | 2021-11-15T15:30:27Z | - |
dc.date.available | 2021-11-15T15:30:27Z | - |
dc.date.issued | 2021 | - |
dc.identifier.issn | 2296-7745 | - |
dc.identifier.uri | https://oak.kribb.re.kr/handle/201005/25001 | - |
dc.description.abstract | In several countries, the public health and fishery industries have suffered from harmful algal blooms (HABs) that have escalated to become a global issue. Though computational modeling offers an effective means to understand and mitigate the adverse effects of HABs, it is challenging to design models that adequately reflect the complexity of HAB dynamics. This paper presents a method involving the application of deep learning to an ocean model for simulating blooms of Alexandrium catenella. The classification and regression convolutional neural network (CNN) models are used for simulating the blooms. The classification CNN determines the bloom initiation while the regression CNN estimates the bloom density. GoogleNet and Resnet 101 are identified as the best structures for the classification and regression CNNs, respectively. The corresponding accuracy and root means square error values are determined as 96.8% and 1.20 [log(cells L -1)], respectively. The results obtained in this study reveal the simulated distribution to follow the Alexandrium catenella bloom. Moreover, Grad-CAM identifies that the salinity and temperature contributed to the initiation of the bloom whereas NH4-N influenced the growth of the bloom. | - |
dc.publisher | Frontiers Media Sa | - |
dc.title | Deep learning for simulating harmful algal blooms using ocean numerical model | - |
dc.title.alternative | Deep learning for simulating harmful algal blooms using ocean numerical model | - |
dc.type | Article | - |
dc.citation.title | Frontiers in Marine Science | - |
dc.citation.number | 0 | - |
dc.citation.endPage | 729954 | - |
dc.citation.startPage | 729954 | - |
dc.citation.volume | 8 | - |
dc.contributor.affiliatedAuthor | Chi-Yong Ahn | - |
dc.contributor.affiliatedAuthor | Hee-Mock Oh | - |
dc.contributor.alternativeName | 백상수 | - |
dc.contributor.alternativeName | 표종철 | - |
dc.contributor.alternativeName | 권용성 | - |
dc.contributor.alternativeName | 천성준 | - |
dc.contributor.alternativeName | 백승호 | - |
dc.contributor.alternativeName | 안치용 | - |
dc.contributor.alternativeName | 오희목 | - |
dc.contributor.alternativeName | 김영옥 | - |
dc.contributor.alternativeName | 조경화 | - |
dc.identifier.bibliographicCitation | Frontiers in Marine Science, vol. 8, pp. 729954-729954 | - |
dc.identifier.doi | 10.3389/fmars.2021.729954 | - |
dc.subject.keyword | Harmful algal blooms | - |
dc.subject.keyword | Deep learning | - |
dc.subject.keyword | Convolutional neural network | - |
dc.subject.keyword | Classification | - |
dc.subject.keyword | Regression | - |
dc.subject.local | Harmful algal bloom | - |
dc.subject.local | Harmful algal blooms | - |
dc.subject.local | harmful algal bloom (HAB) | - |
dc.subject.local | harmful algal bloom | - |
dc.subject.local | Deep learning | - |
dc.subject.local | deep learning | - |
dc.subject.local | Deep Learning | - |
dc.subject.local | Deeplearing | - |
dc.subject.local | Convolutional neural network | - |
dc.subject.local | Classification | - |
dc.subject.local | classification | - |
dc.subject.local | Regression | - |
dc.description.journalClass | Y | - |
There are no files associated with this item.
Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.