Deep learning for simulating harmful algal blooms using ocean numerical model

Cited 21 time in scopus
Metadata Downloads
Title
Deep learning for simulating harmful algal blooms using ocean numerical model
Author(s)
S S Baek; J Pyo; Y S Kwon; S J Chun; S H Baek; Chi-Yong Ahn; Hee-Mock Oh; Y O Kim; K H Cho
Bibliographic Citation
Frontiers in Marine Science, vol. 8, pp. 729954-729954
Publication Year
2021
Abstract
In several countries, the public health and fishery industries have suffered from harmful algal blooms (HABs) that have escalated to become a global issue. Though computational modeling offers an effective means to understand and mitigate the adverse effects of HABs, it is challenging to design models that adequately reflect the complexity of HAB dynamics. This paper presents a method involving the application of deep learning to an ocean model for simulating blooms of Alexandrium catenella. The classification and regression convolutional neural network (CNN) models are used for simulating the blooms. The classification CNN determines the bloom initiation while the regression CNN estimates the bloom density. GoogleNet and Resnet 101 are identified as the best structures for the classification and regression CNNs, respectively. The corresponding accuracy and root means square error values are determined as 96.8% and 1.20 [log(cells L -1)], respectively. The results obtained in this study reveal the simulated distribution to follow the Alexandrium catenella bloom. Moreover, Grad-CAM identifies that the salinity and temperature contributed to the initiation of the bloom whereas NH4-N influenced the growth of the bloom.
Keyword
Harmful algal bloomsDeep learningConvolutional neural networkClassificationRegression
ISSN
2296-7745
Publisher
Frontiers Media Sa
Full Text Link
http://dx.doi.org/10.3389/fmars.2021.729954
Type
Article
Appears in Collections:
Synthetic Biology and Bioengineering Research Institute > Cell Factory Research Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.