Hepatitis C virus core protein transactivates insulin-like growth factor II gene transcription through acting concurrently on Egr1 and Sp1 sites

Cited 51 time in scopus
Metadata Downloads
Title
Hepatitis C virus core protein transactivates insulin-like growth factor II gene transcription through acting concurrently on Egr1 and Sp1 sites
Author(s)
Sook Lee; Ui Sun Park; Young Ik Lee
Bibliographic Citation
Virology, vol. 238, no. 2, pp. 167-177
Publication Year
2001
Abstract
The possibility that hepatitis C virus core gene product (HCV-core) acts as a transactivator in insulin-like growth factor II (IGF-II) gene transcription was tested. HCV-core protein increases endogenous IGF-II expression from promoter 4 (P4) of the IGF-II gene through two cis-acting elements: Sp1 and Egr1 binding sites. Sp1 and Egr1 both bind to IGF-II P4 and functionally cooperate in mediating the maximal activity of IGF-II P4. HCV-core protein induced the binding of Sp1 and Egr1 on its binding sites on IGF-II P4. In addition, Sp1 and Egr1 were stimulated to phosphorylate by HCV-core, and its DNA binding activity was up-regulated upon HCV-core transfection. Transfection with HCV-core in HepG2 cells stimulated the membrane translocation of protein kinase C (PKC) and the treatment of HCV-core transfected cells with calphostin C, a PKC inhibitor, blocked induction of Sp1 and Egr1 DNA binding activity, and eventually transcriptional transactivations of the IGF-II gene. Increasing the DNA binding activity of the phosphorylated form of Sp1 and Egr1 might be an important mechanism for regulating IGF-II gene expression and for promoting cell division during hepatic carcinogenesis. These results indicate that HCV-core functions as a positive regulator of IGF-II transcription through the PKC pathway and that Sp1 and Egr1 are direct targets of the transcriptional regulation of the IGF-II gene which plays an important role in hepatitis C virus pathogenesis during the formation of hepatocellular carcinoma (HCC).
ISSN
0042-6822
Publisher
Elsevier
DOI
http://dx.doi.org/10.1006/viro.2001.0892
Type
Article
Appears in Collections:
1. Journal Articles > Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.