Suppression of glomerulosclerosis by adenovirus-mediated IL-10 expression in the kidney

Cited 53 time in scopus
Metadata Downloads
Suppression of glomerulosclerosis by adenovirus-mediated IL-10 expression in the kidney
Y K Choi; Y J Kim; H S Park; K Choi; S G Park; Young Ik Lee; J G Park
Bibliographic Citation
Gene Therapy, vol. 10, no. 7, pp. 559-568
Publication Year
Glomerulosclerosis is a common morphologic result seen in almost all progressed renal diseases, and is the characteristic change in focal segmental glomerulosclerosis (FSGS). The most convincing hypothesis for glomerulosclerosis is cytokine-mediated injury by infiltrating immune cells in the glomerulus and tubulointerstitial area. This study investigated whether the anti-inflammatory effect of interleukin-10 (IL-10) when expressed by a recombinant adenoviral vector can prevent the onset of glomerulosclerosis in FGS/Kist mice (an animal model with naturally occurring renal failure initiated by FSGS). Each group of mice received recombinant adenoviruses encoding human IL-10 (Ad:hIL-10) by intraparenchymal injection at 6 weeks and were examined for cytokine expression, glomerular sclerotic index, and proteinuria. After injection of Ad:hIL-10 to the kidney, IL-10 expression was found to last over 20 days. Mice treated with Ad:hIL-10 were shown to have a significant reduction in the glomerular sclerotic index at 10 weeks when compared to control groups. The level of proteinuria in Ad:hIL-10-treated mice was also significantly reduced. About 50% of the urine samples of naive and Ad:LacZ-treated groups had severe levels of proteinuria. By contrast, at 10 weeks the group treated with Ad:hIL-10 had lower levels of proteinuria and transforming growth factor-β1 (TGF-β1) expression. These results demonstrate that IL-10 effectively prevents the development of glomerulosclerosis in FGS/Kist mice, and IL-10 gene therapy may be of use for the treatment of renal failure.
adenovirusfocal segmental glomerulosclerosisinterleukin-10
Springer-Nature Pub Group
Appears in Collections:
1. Journal Articles > Journal Articles
Files in This Item:
  • There are no files associated with this item.

Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.